Verkaufsprognose Moving Average Methode

Gleitender Durchschnitt Mittelwert der Zeitreihendaten (Beobachtungen gleich zeitlich beabstandet) aus mehreren aufeinanderfolgenden Zeitabschnitten. Wird bewegt, weil es kontinuierlich neu berechnet wird, sobald neue Daten verfügbar sind, schreitet es fort, indem es den frühesten Wert fällt und den letzten Wert addiert. Beispielsweise kann der gleitende Durchschnitt der sechsmonatigen Verkäufe berechnet werden, indem man den Durchschnitt der Verkäufe von Januar bis Juni, dann den Durchschnitt der Verkäufe von Februar bis Juli, dann von März bis August und so weiter berechnet. (1) reduzieren die Wirkung von temporären Variationen in den Daten, (2) verbessern die Anpassung von Daten an eine Zeile (ein Prozess namens Glättung), um die Daten Trend deutlicher zu zeigen, und (3) markieren Sie einen beliebigen Wert über oder unter der Trend. Wenn Sie etwas mit sehr hoher Varianz sind das Beste, was Sie möglicherweise tun können, ist herauszufinden, den gleitenden Durchschnitt. Ich wollte wissen, was der gleitende Durchschnitt der Daten war, also hätte ich ein besseres Verständnis davon, wie wir es gemacht haben. Wenn Sie versuchen, herauszufinden, einige Zahlen, die oft das Beste, was Sie tun können, ist die Berechnung der gleitenden Durchschnitt zu ändern. Autoregressive integrierte gleitende Durchschnitt (ARIMA) modelFORECASTING Saisonfaktor - der Prozentsatz der durchschnittlichen vierteljährlichen Nachfrage, die in jedem Quartal auftritt. Die jährliche Prognose für das Jahr 4 wird auf 400 Einheiten prognostiziert. Durchschnittliche Prognose pro Quartal ist 4004 100 Einheiten. Vierteljährliche Vorhersage Durchschn. Prognostiziert saisonale Faktor. Kausale Vorhersagemethoden Kausale Prognosemethoden basieren auf einer bekannten oder wahrgenommenen Beziehung zwischen dem zu prognostizierenden Faktor und anderen externen oder internen Faktoren 1. Regression: Die mathematische Gleichung bezieht sich auf eine abhängige Variable auf eine oder mehrere unabhängige Variablen, von denen angenommen wird, dass sie die abhängige Variable beeinflussen 2. ökonometrische Modelle: System von interdependenten Regressionsgleichungen, die einen Wirtschaftszweig beschreiben 3. Input-Output-Modelle: beschreibt die Ströme von einem Sektor der Wirtschaft zur anderen und sagt daher die Inputs vor, die zur Produktion von Outputs in einem anderen Sektor erforderlich sind 4. Simulationsmodellierung Es gibt zwei Aspekte von Prognosefehlern: Bias und Genauigkeit Bias - Eine Prognose ist voreingenommen, wenn sie mehr in eine Richtung als in der anderen Richtung irrt - die Methode neigt zu Unterprognosen oder Überprognosen. Genauigkeit - Prognosegenauigkeit bezieht sich auf die Entfernung der Prognosen von der tatsächlichen Nachfrage ignorieren die Richtung dieses Fehlers. Beispiel: Für sechs Perioden wurden die Prognosen und die tatsächliche Nachfrage nachverfolgt Die folgende Tabelle gibt die Ist-Nachfrage D t und die Prognose-Nachfrage F t für sechs Perioden an: kumulierte Summe der Prognosefehler (CFE) -20 mittlere absolute Abweichung (MAD) 170 6 28,33 mittlere quadriert Fehler (MSE) 5150 6 858.33 Standardabweichung der Prognosefehler 5150 6 29.30 Durchschnittlicher absoluter Prognosefehler (MAPE) 83.4 6 13.9 Welche Informationen prognostizieren prognostiziert, hat eine Tendenz zur Überschätzung der Nachfrage durchschnittlichen Fehler pro Prognose betrug 28,33 Einheiten oder 13,9 von Die tatsächliche Bedarfsabtastverteilung der Prognosefehler hat eine Standardabweichung von 29,3 Einheiten. KRITERIEN ZUR AUSWAHL EINES VORHABENMETHODES Ziele: 1. Maximieren Sie die Genauigkeit und 2. Minimieren Sie Vorspannungspotentialregeln für die Auswahl einer Zeitreihenvorhersagemethode. Wählen Sie die Methode aus, die mit dem kumulativen Vorhersagefehler (CFE) gemessen wird, oder gibt die kleinste mittlere absolute Abweichung (MAD) an oder gibt das kleinste Tracking-Signal oder unterstützt Management-Überzeugungen über das zugrunde liegende Bedarfsmuster oder andere. Es scheint offensichtlich, dass ein gewisses Maß an Genauigkeit und Bias zusammen verwendet werden sollte. Wie ist die Anzahl der zu untersuchenden Perioden, wenn die Nachfrage inhärent stabil ist, werden niedrige Werte von und und höhere Werte von N vorgeschlagen, wenn die Nachfrage inhärent instabil ist, werden hohe Werte von und und niedrigere Werte von N vorgeschlagen FOCUS FORECASTING quotfocus forecastingot bezieht sich auf Eine Annäherung zur Prognose, die Prognosen durch verschiedene Techniken entwickelt, dann wählt die Prognose aus, die durch den quotbestquot dieser Techniken produziert wurde, in denen quotbestquot durch irgendein Maß des Prognosefehlers bestimmt wird. FOKUSVORHERSAGE: BEISPIEL In den ersten sechs Monaten des Jahres betrug die Nachfrage nach einer Einzelhandelseinheit 15, 14, 15, 17, 19 und 18 Einheiten. Ein Händler nutzt ein Fokus-Prognosesystem, das auf zwei Prognosetechniken basiert: einem zweistufigen gleitenden Durchschnitt und einem trendgesteuerten exponentiellen Glättungsmodell mit 0,1 und 0,1. Bei dem exponentiellen Modell lag die Prognose für Januar bei 15 und das Trendmittel Ende Dezember war 1. Der Händler nutzt die mittlere absolute Abweichung (MAD) für die letzten drei Monate als Kriterium für die Auswahl des Modells, das zur Prognose verwendet wird Für den nächsten Monat. ein. Was wird die Prognose für Juli sein und welches Modell wird verwendet? Würden Sie auf Teil a antworten? Wenn die Nachfrage nach Mai 14 statt 19 gewesen wäre


Comments